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ABSTRACT 

We study a mechanism for the energy loss in the core of a star via the 

Compton-like process ye ---+ q5;e with the virtual Higgs boson q5f turning into 

a pair of Goldstone bosons JJ that carry away the thermonuclear energy. As- 

trophysical constraint upon the coupling is derived. The, bound is loose enough 

that the decay mode H + J J can well be the dominating channel in the hidden 

Higgs models. 
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For various reasons, it is sometimes desirable to extend the standard sum x 

Uy( 1) electroweak gauge model with additional global symmetry which is broken 

spontaneously. For the example of the lepton number non-conservation, Majo- 
I14 rana neutrino mass arises and a massless Goldstone boson, dubbed Majoron, 

exists as the the remnant of the original lepton number symmetry. Another ex- 

ample is the Peccei-Quinn symmetry “I which solves the strong CP problem and 

gives a light axion:’ the pseud*Goldstone boson with mass solely due to the 

QCD anomaly. 

It has been noticed15”’ that the physical Higgs boson Ho can couple naturally 

to a pair of the Goldstone bosons J. Such an amplitude comes from the Higgs 

potential of the neutral component &I of the electroweak doublet and the neutral 

s field which carries the quntum number of the global symmetry, 

w4 4 = -P2&o’+ Gg4o)2 - m2s+s + Z(S+S)~ + ~(s+s)(&&) . (1) 

This potential respects the U(1) global symmetry of s + sei6. The real parts of 

$0 and s spontaneously develop vacuum expectation values ~2 and v, respectively. 

We separate the real parts &, sr and imaginary parts +i, si of the dynamical 

variables as follows: 

4o & = ‘(V2 + $r +i#i), S = $(Vs +Sr +iSi) . 

The mass term is 

c 
2 Pw2 

m = -i ( 4r Sr > iiT2 
( s 

21v2 
s 

(2) 

(3) 

For nonvanishing ,f3, $r and sr mix with each other. The physical mass eigenstates 

H and CT become 

From the potential in Eq. (l), th e induced tri-boson couplings of the Higgs boson 
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or the u boson to the s” are 

L tri. = -k(@V2& + 2ZVsSr)S;2 . (5) 

The coefficients are proportional those in the bottom row of the mass matrix in 

Eq. (3). From the eigenvalue condition, it is straightforward to obtain 

L tri. = -&sine m%H + cos 8 m:a)sf . 
s (6) 

If TV = 0, si is the G o Id t s one boson J. When T3(s) # 0, e.g. s is the T3 = -1 

component of a triplet of lepton number L = 2 in the Gelmini-Roncadelli (GR) 
model:’ then 3; will mix with 4;. In this case, the astrophysical bound” requires 

us < 02 N (figs)-) as in the GR model, the mixing can be neglected and we 

can still consider 

Si N J. (7) 

Eq. (6) implies that the Higgs boson H and the cr boson can decay to the 

Goldstone boson pair JJ dominantly for a reasonable mixing angle 8. 

It is interesting to put constraint on these tri-boson couplings using the low 

energy physics. Naively, one will take the coefficient in the Hsf term of Eq. (6) 

as the tri-boson coupling for all values of momentum. This will overestimate the 

amplitude if the Q boson contribution is not included. For an off-shell virtual 

c$: of momentum p emitted by the matter field, the decay amplitude ~#f + JJ 

suffers delicate cancellation between the H and d contributions, 

44; + JJ) =$cose sin6 ( 4 d 
p2-m$-p2-m,)’ ,-, 

=$cos6 sin8 ( ’ 
2 

- - 
e p2-rn& p&-n; L2) * 

Q 

The amplitude vanishes at zero momentum as a property of the Goldstone boson, 

therefore it is difficult to obtain stringent limits upon-these couplings. This can 
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be seen more clearly if the Goldstone boson is identified as the phase of the 

neutral s field, instead’ of the imaginary part!” In such phase representation, 

the Goldstone boson appears with the derivative couplings. However, the above 

observation reafhrms that it is legitimate to use the formalism of Eq. (2) in 

perturbative analysis as long as all the fields are properly included. 

In this paper, we study the constraint among the mass mu of the 0 boson, 

the vacuum expectation value us associated with the Majoron and the mixing 

angle 8 between the Higgs boson H and the Q boson. The constraint comes from 

the energy loss in the star’*’ due to the Compton-like process +ye -+ $fe of the 

bremsstrahlung”’ of a virtual #r boson which turns into the escaping Goldstone 

bosons 4f + (0, H)’ + JJ with the stellar energy carried away. We know 

that the single Goldstone boson bremsstrahlung’” 7e + Je is suppressed by 

the vanishingly small Yukawa coupling gesJ for the reason of either the scale 

hierarchy”’ or the high loop effect!“’ The mixing angle t9 is an independent 

parameter from gcaJ and hence the J pair bremsstrahlung imposes new constraint 

on the models. Note that in the models[a”o’ of OUT discussion with us 5 ~2, sr 

does not couple to the electron. 

There are also other elementary processes for the the stellar energy loss, such 

as the Primakoff effect and the e+e- annihilation. However, from the previous 

calculations IW.71 of the axion emission in the stars, the Compton-like process is 

the most important one for the energy loss in the red giant, which gives the 

strongest bound. So we will concentrate our attention to the Compton-like pro- 

cess. 

For the star of temperature much less than mec2/k = 593 x 107’K and of 

density much lower than me/J% = 1.6 x 106g cmV3, we can use the nonrelativsitic 

approximations, i.e. the initial electron is at rest and the incident photon energy 

E(<< m,) is equal to the energy loss per reaction. We also ignore the plasmon 

effect. The process (see Fig. 1) 7e -+ JJe is divided into two stages ye + 4fe 

and 4; + (u, H)* + JJ with the virtual mass m of the intermediate 4r boson 
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being integrated, 

,. v, 32~2 (m2 - ma)2 + rn$I’z ’ 
0 

for the case 6 << 1 and kT << mH. The cancellation of Eq. (8j has been 
- IllI rated. The subprocess cross section 1s 

a(ye -+ Qfe) = Jz ToGp(l - m2/E2)i . 

(9) 

incorpo- 

(10) 

Therefore, the 

star composed 
~. 

- 

energy loss & per unit time for each unit mass in the core of the 

of nucleus of charge 2~ and mass number AN is given by 

with m, as the nucleon mass. The dimensionless function 3 is defined as 

(12) 

We can extract the 7 -’ leading term in the narrow width approximation, 

3(&r) = @3r-1!7(b) + f(P) ’ (13) 

Here the residual function g(p) is 

m 

J dxx3(e= - l)-‘(1 - p2/x2)P ) 

P 
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and the remaining finite part is f(P). Using the decay width, 

we obtain 

The g term corresponds to the on-shell 0 production, and the f term is related 

to the off-shell (b, H) contribution. The functions g and f are numerically given 

in Fig. 2. It is known that 

g(0) = S<(4) = r4/15, f(0) = 48<(6) = 16n4/315 , (17) 

and also the asymptotic forms of g and f for large p are: 

SW - 4 Q(2/3)ie+ 

f(P) N, 18432p-4~(10) = 20487r’“p-4/10395 . 
(18) 

The zeta function is c(x) = cr!.l n-=. When T >> mu, Q depends on tem- 

perature as the combination of two terms T6 from f and T* from g. They can 

be understood as the products of the factors: the photon density (a T3), the 

missing energy (a T) and the 3-body phase space (a T2) or the 2-body phase 

space (a 1). On the other hand, when mu >> T at low temperature, Q depends 

on temperature as T lo because of the numerator m4 in Eq. (9). 

The energy generation rate[l” from the 3ar process is Qaa z 100 erg g-lsec-’ 

for the helium burning red giant at a temperature lo8 OK. The stability condition 

Q c &so gives contraint upon 8, m, and vS as ilIustrated in Fig. 3. For example, 

0 < 3 x 10e8 when mu = 0, 
(19) 

or 19 < 5 x lo-’ when mu = 200 KeV and vS = 100 KeV . 

Recently, Dearborn[l” et al. studied the relation between the energy loss and 

the ignition of the stellar helium core. They were able to improve the upper 
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bound on geaJ. We expect that a moderate improvement on the constraint can 

be obtained following their procedure. 

Indirectly, the stellar energy loss gives limit upon the H JJ vertex in Eq. (6), 

&JJ = -~HJJ , 

K= 8%. 
VS 

(20) 

To require the f contribution of the virtual (a, H) effect in Eq. (16) less than the 

thermoenergy generation rate Qsa, we have 

Q3a > (A2mn)azt;2T6f(F) . (21) 

The upper bound of tc is given in Fig. 4. For large m,, the bound is simplified 

with Eq. (18), 

Q3a > ( AFm, ) 384CltP4)24G+2 Tlo - 
0 

(22) 

The bound becomes weaker as m, increases. For models’101 with vS of the size of 

the electroweak scale, there is no useful bound at all. 

From the above analysis, the branching fraction of H + J J nom&& to 

that of the lepton pair Zf channel is 

r(H + JJ) 
I’(H ---) ri) 

which is only subjected to a very weak constraint. The Higgs boson can decay 

dominantly into the Goldstone boson pair. 

In conclusion, we show that the virtual q& Higgs boson bremsstrahlung in the 

core of a star is a potential source of stellar energy loss. Astrophysical constriant 

upon the. coupling tc of the tri-boson vertex HJJ is derived. The bound is loose 

enough that the decay mode H + JJ can well be the dominating channel. 

7 



Acknowledgement We like to thank H. Georgi for useful comments about the 

properties of the Goldstone bosons. We are also benefitted from discussions with 

Palash Pal and L. Wolfenstein. This work was supported in part by the U.S. 

Department of Energy and in part by the Research Corporation. 

8 



REFERENCES 

1. Y. Chikashige, R. Mohapatra and R. Peccei, Phys. Rev. Lett. 45 (1980) 

1926; Phys. Lett. 98B (1981) 265. 

2. 

3. 

4. 

5. 

6. 

7. M. Fukugita, S. Watamura and M. Yoshimura, Phys. Rev. Lett. 48 (1982) 

1522; Phys. Rev. D26 (1982) 1840; A. Pantziris and K. Kang, Phys. Rev. 

033 (1986) 3509. 

8. D. Dicus, Phys. Rev. D6 (1972) 941, and references therein. 

9. K. Sato and H. Sato, Prog. Theor. Phys. 54 (1975) 1564; D. Dicus, E.W. 

Kolb, V.L. Teplitz and R.V. Wagoner, Phys. Rev. D18 (1978) 1829. 

D. Chang, W.-Y. Keung and P. Pal, Phys. Rev. Lett. in press, Brookhaven 

preprint BNL-41607 (1988); 

D. Chang and W.-Y. Keung, preprint NUHEP-TH-88-11 (1958). 

G. Araki, Prog. Theor. Phys. 5 (1950) 507, h ere the relativistic cross section 

is given. Their couplings e2 and g2 are equal to our a! and &GFmz/4n 

respectively. See also V. Barges, F. Halzen and W.-Y. Keung, Phys. Rev. 

D25 (1982) 1838. 

10. 

11. 

12. 

13. 

G.B. Gelmini and M. Roncadelli, Phys. Lett. 99B (1981) 411; H. Georgi, 

S.L.‘Glashow and S. Nussinov, Nucl. Phys. B193 (1981) 297. 

R. Peccei and H. Quinn, Phys. Rev. Lett. 38 (1977) 1440; Phys. Rev. D16 

(1977) 1791. 

S. Weinberg, Phys. Rev. Lett. 40 (1978) 223; F. Wilczek, Phys. Rev. Lett. 

40 (1978) 279. 

R. Shrock and M. Suzuki, Phys. Lett. 1lOB (1982) 250. 

L.-F. Li, Y. Liu and L. Wolfenstein, Phys. Lett. 158B (1985). 

B. Paczynski, Acta Astron. 20 (1970) 47;. D. Clayton, Principles of Stellar 

Evolution and Nucleosynthesis (McGraw-Hill, New York, 1986). 

D. Dearborn, D. Schramm and G. Steigman, Phys. Rev. Lett. 56 (1986) 

26. 

9 



FIGURE CAPTIONS 

1) Digrams for the virtual 4,. boson bremsstrahlung ye + JJe. 

2) The functions f and g for the off-shell (a, H) and the on-shell u contribu- 

tions versus /?(= m,/T) in Eqs. (13) and (14). 

3) The 0 upper bound from the constraint due to the energy loss in red giants 

versus m, for variou values of vS. The curve labelled with u is the contraint 

due to the on-shell u production only. 

4) The upper bound of K of the H + JJ amplitude versu m,. 

e e 

Fig. 1 
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